Metal Speciation in the Lagoon Sediment Interstitial Water from the Northeast Coast, Korea

Dongjin Kim*, Minchul Kim*, Jinyull Yoo*, Sangyong Kwon**, Yongchan Seo*, Jae E. Yang***, Seung-yoon Oh*, Yong Sik Ok***

Ministry of Environment, Republic of Korea • Department of Environmental Science, Kangwon National University • Division of Biological Environment, Kangwon National University

ABSTRACT: Sediment and interstitial water samples from ten lagoons in the Northeastern coastal part of South Korea were analyzed to obtain the concentrations of metals and inorganic ligand. These data, coupled with pH and ionic strength, were used to compute the aqueous speciation of the metals in the interstitial water using the MINTEQA2 equilibrium program. The K and Na were almost entirely eliminated by free aqua ions. Metals of Cd, Co, Ni, Pb and Zn were bound as chloride-metal complexes of the type $M^{x+} + xCl^-$, and Fe, Mn and Mg were bound by sulfate equilibria ($M^{2+} + SO_4^{2-}$). Hg(II) was speciated as $HgCl_2(aq)$, $HgCl_3^{2-}$ and $HgCl_4^{2-}$, and Hg(II) and Cd(II) were existed as chloride-metal complexes, metals of Cu, Mg, Mn, Cr formed 3 metal-ligand complexes. In the interstitial water with high chloride concentrations, almost all of the metals were dominated by free aqua ions. Metals of Cd, Co, Ni, Pb and Zn were bound as chloride-metal complexes of the type $M^{x+} + xCl^-$, and Fe, Mn and Mg were bound by sulfate equilibria ($M^{2+} + SO_4^{2-}$). Hg(II) was speciated as $HgCl_2(aq)$, $HgCl_3^{2-}$ and $HgCl_4^{2-}$. However, in the interstitial water with low concentrations of chloride, Hg(II) and Cd(II) were existed as chloride-metal complexes, metals of Cu, Mg, Mn, Ni, Pb and Zn were dominated by sulfate equilibria, and the speciation of Fe(II) was bound as $Fe(OH)_2$, $Fe(OH)_3(aq)$. Metals such as Al, As, and Cr were dominated by hydroxy-metal and oxide-metal species in nearly all of the lagoons.

Key Words: Lagoon, Sediment, Interstitial Water, Metal, Speciation

요약: 호소나 하천바닥의 퇴적물에는 많은 양의 미량 금속이 함유되어 있으며, 퇴적물과 간극수 사이에는 미량 금속들의 교환이 일어난다. 간극수로 이동된 미량 금속들은 쉽게 수환경으로 확산되어 수생태계에 독성을 유발한다. 그러나 이러한 미량 금속들은 존재형태에 따라 수생물에 미치는 영향이 다르다. 따라서 본 연구에서는 경포호 등 10개의 동해안 호수에 대한 퇴적물의 간극수를 분석하고 화학 분포 예측 프로그램(MINTEQA2)을 이용하여 미량 금속들의 존재형태를 예측하여 수환경에서의 독성 여부를 확인하였다. 퇴적물에서 추출한 간극수의 미량 금속 분석결과를 예측 결과, K와 Na는 자유이온형태로 존재하고 있었으며, Al, As 및 Cr은 자유이온 형태를 비롯한 3~4개의 합물을 형성하였고, Co, Ca, Cd, Ni, Pb 또는 Zn은 10개 이상의 다양한 합물을 형성하였다. 염분도가 높은 경포호 등의 경우는 크로마토그램(Group II)로는 Cd, Co, Ni, Pb, Hg 또는 Zn이 주로 염화 합물을 형성하였으며, Fe, Mn 및 Mg는 화합물 합물을 형성하였다. 그러나 염분도가 낮은 경포호 등의 경우에는 Cd의 강한 염화 합물을 형성하였으며, Cu, Mg, Mn, Pb 또는 Zn는 화합물 합물을 형성하였다. Fe는 $Fe(OH)_2$, $Fe(OH)_3(aq)$ 등의 수산기 합물을 형성하였다. 또한 염분도가 낮은 Al, As 및 Cr의 경우는 경포호에서 수산기 및 산화형태의 합물을 형성하였다. 대부분 호소의 간극수에 존재하는 미량 금속들은 자유이온(M^+)형태로 존재하고 있으며, 그 외에 $M^{2+} + xCl^-$와 $M^{2+} + SO_4^{2-}$의 합물을 형성하고 있어 수환경으로 확산될 경우 생태계 독성 및 축적을 일으킬 것으로 생각된다.

주제어: 석회, 퇴적물, 간극수, 중량속, 화학종

1. 서 론

동해안 석회는 약 3,500년 전에 지각변동과 화구에 사주 및 사취가 발달하면서 생성된 자연로이다. 석회는 내륙의 담수호와 달리 담수와 해수가 혼합된 기수('水')적 특성을 가지고, 수심이 얇음에도 불구하고 표층과 심층의 혼합이 제한되어 상층 산소갈가가 자주 발생한다. 이러한 석회는 오랜 기간 동안 유역으로부터 오염물질이 유입되어 호수 바닥에는 많은 독특이 빠져있으며, 독특에는 Al, Fe 등 중량속 함량이 매우 높은 상태이다. 일반적으로 중량속이나 미량 오염물질(trace pollutants)은 수환경에 유입될 경우 부유성 고형물질에 흡착되어 수중에 머무르다가 호수의 바닥에 독특하게 된다. 이러한 독특
2. 재료 및 방법

2.1. 퇴적물 및 간극수 시료채취

간극수 채취를 위한 석호 퇴적물은 경포호, 항호, 메호, 영랑호, 청호, 장호, 삼포호, 천호, 송호, 화전호 등 10개 호수의 중간 지점에서 각각 1개의 시료를 채취하였다. 그러나 경포호, 송호와 같이 두개로 구분되는 호수는 각 호수의 중앙 지점에서 2개의 시료를 채취하였다. 퇴적물은 US EPA(United States Environmental Protection Agency)의 “Sampling and Analysis Methods (2000)”에 준하여 Grab 채취기를 채취하였다. 채취 시 퇴적물 상부층의 몸은 준안내하고 상부로부터 10 ~ 15 cm의 퇴적물을 시료 통지에 담아 공기와 접촉을 최소화하여 항장(4℃) 보관하였다. 간극수 추출은 비진환용액직입(inmiscible liquid displacement)법(Yang and Skogley, 1989)을 이용하였다. 추출방법은 저전결 80 g을 250 mL polycarbonate 원심분리기기에 담고 머드의 비합합용액(Freon: 1,1,2-trichloro-1,2,2-trifluoroethane; density = 1.57 g/cm3)을 남겨 악기상에서 30분간, 5,000 rpm으로 원심분리한 후 mem-}

이 이상한 한계 사용이 적절하지 않습니다. 문헌을 제공하고, 그의 정확성을 확인할 필요가 있음을 알려드립니다. 추가적인 문헌 제공이 필요합니다.
2.3. 간극수의 금속 화학변 화모델링
간극수 내 금속이온, 리간드 이온, 금속-리간드 복합체에 관한 화학적 분포는 간극수의 pH, 전기전도도, 금속이온의 농도 및 무기 리간드 농도를 입력 변수로 하여 MINEQA2를 사용하여 산출하였다.\(^{13}\)

3. 결과 및 고찰

3.1. 분석보장 및 품질관리(QA/QC)
Table 1은 청호의 최적물로부터 추출한 간극수에 존재하는 중금속과 무기 리간드의 분석을 위한 과정관리 결과를 보여주고 있다. 가장 첨가시료에 대한 분석결과의 회수율은 76.83~120.45%로 오차범위는 0.26~8.77%로 높은 정확도와 정밀도를 보였으며, 사용한 중금속 방법에 대한 검출계이는 중금속별로 0.0066~2.537 µg/L로 계산되었다. Standard method에서는 중금속분석의 경우 정확성은 오차범위를 10% 이내, 가장첨가시료의 회수율은 80~120%를 허용하게 하고 있다.

3.2. 석호 최적물의 분리·화학적 특성
3.2.1. 최적물의 입정분포

Table 1. Quality assurance and control data of metal and inorganic ligand analyses for the interstitial water extracted from the Cheongcho-Ho sediment

<table>
<thead>
<tr>
<th>Elements</th>
<th>Unit</th>
<th>Interstitial water from Cheongcho-Ho sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MDL(^{1})</td>
</tr>
<tr>
<td>Ca</td>
<td>mg/L</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>mg/L</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/L</td>
<td>-</td>
</tr>
<tr>
<td>Na</td>
<td>mg/L</td>
<td>-</td>
</tr>
<tr>
<td>Al</td>
<td>µg/L</td>
<td>0.047</td>
</tr>
<tr>
<td>As</td>
<td>µg/L</td>
<td>0.026</td>
</tr>
<tr>
<td>Cd</td>
<td>µg/L</td>
<td>0.014</td>
</tr>
<tr>
<td>Co</td>
<td>µg/L</td>
<td>0.081</td>
</tr>
<tr>
<td>Cr</td>
<td>µg/L</td>
<td>0.298</td>
</tr>
<tr>
<td>Cu</td>
<td>µg/L</td>
<td>0.239</td>
</tr>
<tr>
<td>Fe</td>
<td>µg/L</td>
<td>2.537</td>
</tr>
<tr>
<td>Hg</td>
<td>µg/L</td>
<td>0.0066</td>
</tr>
<tr>
<td>Mn</td>
<td>µg/L</td>
<td>0.028</td>
</tr>
<tr>
<td>Ni</td>
<td>µg/L</td>
<td>0.040</td>
</tr>
<tr>
<td>Pb</td>
<td>µg/L</td>
<td>0.046</td>
</tr>
<tr>
<td>Zn</td>
<td>µg/L</td>
<td>0.154</td>
</tr>
<tr>
<td>Cl(^-{1})</td>
<td>mg/L</td>
<td>-</td>
</tr>
<tr>
<td>NH(_4)(^{+})</td>
<td>mg/L</td>
<td>0.008</td>
</tr>
<tr>
<td>PO(_4)(^{2-})</td>
<td>mg/L</td>
<td>0.020</td>
</tr>
<tr>
<td>SO(_4)(^{2-})</td>
<td>mg/L</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{1}\)MDL : Method Detection Limit, \(^{2}\)RPD : Relative Percent Difference, \(^{3}\)MS : Matrix Spike Recovery, \(^{4}\)MSD : Matrix Spike Recovery Duplicate
Table 2. Metal concentrations of ten lagoon sediments collected from the Northeastern coast of the South Korea

<table>
<thead>
<tr>
<th>Unit</th>
<th>Lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GP<sup>1</sup></td>
</tr>
<tr>
<td>Al</td>
<td>mg/g</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/g</td>
</tr>
<tr>
<td>Mn</td>
<td>µg/g</td>
</tr>
<tr>
<td>As</td>
<td>µg/g</td>
</tr>
<tr>
<td>Cd</td>
<td>µg/g</td>
</tr>
<tr>
<td>Cu</td>
<td>µg/g</td>
</tr>
<tr>
<td>Cr</td>
<td>µg/g</td>
</tr>
<tr>
<td>Hg</td>
<td>µg/g</td>
</tr>
<tr>
<td>Ni</td>
<td>µg/g</td>
</tr>
<tr>
<td>Pb</td>
<td>µg/g</td>
</tr>
<tr>
<td>Zn</td>
<td>µg/g</td>
</tr>
<tr>
<td>Se</td>
<td>µg/g</td>
</tr>
<tr>
<td>Co</td>
<td>µg/g</td>
</tr>
</tbody>
</table>

¹GP: Gyoungpo-Ho ²H: Hyang-Ho ³M: Mea-Ho ⁴CC: Chungcheo-Ho ⁵YR: Youngrang-Ho ⁶SJ I: Songji-Ho I ⁷SJ II: Songji-Ho II ⁸HJ I: Hwajinpo-Ho I ⁹HJ II: Hwajinpo-Ho II

Table 3. Metal concentrations of the soil collected from the representative lagoon areas

<table>
<thead>
<tr>
<th>Area</th>
<th>Cd (µg/g)</th>
<th>Cu (µg/g)</th>
<th>As (µg/g)</th>
<th>Hg (µg/g)</th>
<th>Pb (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gangneung</td>
<td>0.065</td>
<td>0.043</td>
<td>0.103</td>
<td>0.020</td>
<td>1.403</td>
</tr>
<tr>
<td>Sokcho</td>
<td>0.046</td>
<td>0.082</td>
<td>0.108</td>
<td>0.040</td>
<td>3.052</td>
</tr>
<tr>
<td>Goseong</td>
<td>0.071</td>
<td>1.088</td>
<td>0.904</td>
<td>0.011</td>
<td>1.670</td>
</tr>
</tbody>
</table>

Table 3, 4).
Table 4. Chemical composition of the interstitial water extracted from ten lagoon sediments

<table>
<thead>
<tr>
<th>Unit</th>
<th>Lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>GP (1)</td>
</tr>
<tr>
<td>EC mS/cm</td>
<td>7.70</td>
</tr>
<tr>
<td>IS mmol/L</td>
<td>50.70</td>
</tr>
<tr>
<td>TDS mg/L</td>
<td>24960.0</td>
</tr>
<tr>
<td>Alkalinity mg/L</td>
<td>60.00</td>
</tr>
<tr>
<td>Cl mg/L</td>
<td>11905.0</td>
</tr>
<tr>
<td>SO₄²⁻ mg/L</td>
<td>1579.5</td>
</tr>
<tr>
<td>HCO₃⁻ mg/L</td>
<td>59.69</td>
</tr>
<tr>
<td>CO₃²⁻ mg/L</td>
<td>0.28</td>
</tr>
<tr>
<td>NH₄⁺ mg/L</td>
<td>9.69</td>
</tr>
<tr>
<td>NO₃⁻ mg/L</td>
<td>1.32</td>
</tr>
<tr>
<td>PO₄³⁻ mg/L</td>
<td>1.83</td>
</tr>
<tr>
<td>Ca mg/L</td>
<td>288.60</td>
</tr>
<tr>
<td>Mg mg/L</td>
<td>862.00</td>
</tr>
<tr>
<td>Na mg/L</td>
<td>6888.00</td>
</tr>
<tr>
<td>Al µg/L</td>
<td>95.926</td>
</tr>
<tr>
<td>Fe µg/L</td>
<td>614.677</td>
</tr>
<tr>
<td>Mn µg/L</td>
<td>3123.87</td>
</tr>
<tr>
<td>Cd µg/L</td>
<td>2.566</td>
</tr>
<tr>
<td>Cu µg/L</td>
<td>35.813</td>
</tr>
<tr>
<td>Cr µg/L</td>
<td>27.537</td>
</tr>
<tr>
<td>Hg µg/L</td>
<td><0.0066</td>
</tr>
<tr>
<td>Pb µg/L</td>
<td>23.689</td>
</tr>
<tr>
<td>As µg/L</td>
<td>36.350</td>
</tr>
<tr>
<td>Ni µg/L</td>
<td>15.369</td>
</tr>
<tr>
<td>Zn µg/L</td>
<td>8.735</td>
</tr>
<tr>
<td>Co µg/L</td>
<td>0.910</td>
</tr>
<tr>
<td>GP (1)</td>
<td>7.28</td>
</tr>
<tr>
<td>H (2)</td>
<td>7.26</td>
</tr>
<tr>
<td>M (3)</td>
<td>53.0</td>
</tr>
<tr>
<td>CC (4)</td>
<td>69.9</td>
</tr>
<tr>
<td>YR (3)</td>
<td>38.0</td>
</tr>
<tr>
<td>GWP (5)</td>
<td>29.3</td>
</tr>
<tr>
<td>BP (5)</td>
<td>24.0</td>
</tr>
<tr>
<td>CF (6)</td>
<td>11.7</td>
</tr>
<tr>
<td>SJ-I (7)</td>
<td>16.6</td>
</tr>
<tr>
<td>SJ-II (7)</td>
<td>16.7</td>
</tr>
<tr>
<td>JJ-I (8)</td>
<td>16.7</td>
</tr>
<tr>
<td>JJ-II (8)</td>
<td>15.8</td>
</tr>
<tr>
<td>pH</td>
<td>7.83</td>
</tr>
<tr>
<td>EC</td>
<td>26.2</td>
</tr>
<tr>
<td>IS</td>
<td>340.6</td>
</tr>
<tr>
<td>TDS</td>
<td>16768.0</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>90.0</td>
</tr>
<tr>
<td>Cl</td>
<td>7625.0</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>220.7</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>88.93</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>0.18</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>36.50</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>1.82</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>1.64</td>
</tr>
<tr>
<td>Ca</td>
<td>154.70</td>
</tr>
<tr>
<td>K</td>
<td>184.80</td>
</tr>
<tr>
<td>Mg</td>
<td>325.00</td>
</tr>
<tr>
<td>Na</td>
<td>2857.00</td>
</tr>
<tr>
<td>Al</td>
<td>105.430</td>
</tr>
<tr>
<td>Fe</td>
<td>476.438</td>
</tr>
<tr>
<td>Mn</td>
<td>612.111</td>
</tr>
<tr>
<td>Cd</td>
<td>1.265</td>
</tr>
<tr>
<td>Cu</td>
<td>30.591</td>
</tr>
<tr>
<td>Cr</td>
<td>61.428</td>
</tr>
<tr>
<td>Hg</td>
<td><0.0066</td>
</tr>
<tr>
<td>Pb</td>
<td>21.322</td>
</tr>
<tr>
<td>As</td>
<td>23.624</td>
</tr>
<tr>
<td>Ni</td>
<td>11.167</td>
</tr>
<tr>
<td>Zn</td>
<td>5.058</td>
</tr>
<tr>
<td>Co</td>
<td>0.712</td>
</tr>
</tbody>
</table>

포함)는 향조, 청조호, 경포도 등이 가장 높았고, 봉포호 및 천진호가 가장 높았다. 석호 퇴적물의 건축에 대한 화 학적 조성을 Horne와 Goldman의 가수로 분류기준에 따 라 구분한 결과 Group I(일본도가 0.5% 이상한 호소)에는 경포호, 향조, 마코, 청조호, 영랑호, 광포호, 송지호, 화진 호가, Group II(일본도가 0.5% 이하인 호소)에는 병상호, 천진호가 해당되었다(Table 4). ④)

간각수에는 존재하는 주요 중금속인 Cd, Cu, Cr, Pb, As의 농도는 각각 0.5 ~ 4.7, 17.0 ~ 42.0, 4.8 ~ 61.4, 2.7 ~ 176.4, 0.9 ~ 55.7 µg/L 범위를 보였다. As는 청조호가 55.7 µg/L 로 가장 높았고, 경포호와 화진호도 비교적 높은 농도였으며, 봉포호와 천진호는 각각 1.2 µg/L, 0.9 µg/L로 가장 높았다. Hg, Ni, Zn 및 Co 농도는 다른 중금속의 농도 보다 낮은 편이었다. 간각수의 중금속 농도는 석호에 따라 달랐으며, 석호간에 일정한 경향을 보이지 않았고 시료 표면에 제작한 지역에 따라 농도차이를 보였다(Table 4).

퇴적물 내 금속농도는 Al, Fe이 다른 금속에 비해 100배 이상 높았으나(Table 2), 간각수에서는 이들보다 알칼리 및 알칼리도금속(Na, Mg 등)이 더 높게 조사되었다. Richard 등에 연구한 캐나다 Qu’Appelle River의 퇴적물 간각수 분 석결과와 비교한 결과, Al이 12 ~ 90 µg/L, Mn이 73 ~ 2200 µg/L로 석호 간각수보다 높았으나, Cd은 1 ~ 9 µg/L, Co
3.4. 퇴적물 간극수 중의 금속류 화학종 분포

석호 퇴적물 간극수에 존재하는 금속의 화학종을 금속과 리간드 간의 열역학적 안정화상수에 근거하여 MINTEQA2로 계산한 결과를 Table 5와 6에서 보여주고 있다. Table 5는 간극수중의 염분도가 높은 석호(Group I)간극수의 모델링 결과이며, Table 6은 염분농도가 낮은 2개 석호(Group II)간극수의 화학종 모델링 결과이다.

3.4.1. Group I 석호 간극수에서의 금속 화학종 분포

Ca, Mg, Na, K 및 Al 등은 전자주기계 산소를 함유하는 리간드, 즉 탄산염이온, 수산이온 등과 잘 결합할 것이지만, 간극수 내의 탄산염농도가 낮아 대부분 자유이온상태로 주로 존재하였는데, Ca는 Ca2+ 형태가 84.5~95.3% 존재하였고, Mg는 Mg2+ 형태가 89.0~98.5%, Na는 Na+ 형태가 98.6~99.8%, K는 K+ 형태가 98.2~99.8% 존재하는 것으로 계산되었다. Al은 대부분 Al(OH)3+ 형태가 96.3~99.5% 존재하는 것으로 계산되었다. As는 HAsO42- 형태가 83.3~97.0% 존재하였고 주로 5가 형태였다. Cd는 CdCl2가 42.5~61.8%, CdCl3가 11.9~40.1%, Cd2+가 3.0~23.0%로 계산되었다. 그러나 염분도가 높은 청초호는 CdCl2가 11.08%로 비교적 높았다. Co는 Co2+가 65.0~

<table>
<thead>
<tr>
<th>Table 5. Predominant metal species in the interstitial water of lagoon sediments classified as Group I by Horne and Goldman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>As</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>Co</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Hg</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>Mn</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Zn</td>
</tr>
</tbody>
</table>

1) Pore waters containing high concentrations of chloride(GP, H, M, CC, GWP, SJ-1, SJ-2, HJ-1, HJ-2).
2) Each species accounts for ≥ 5% of total molar concentration of metal. Together, the primary species account for ≥ 90% of the total metal.
3) Each species accounts for ≥ 0.01% but ≤ 5% of the total molar concentration of the metal.
4) H2AsO4 is a secondary species in the H, YR, HJ-1, HJ-2.
5) CaSO4(aq) is a secondary species in the H-P, Y.
6) CdCl3 is a primary species in the GP, CC, HJ-1, HJ-2.
7) CuNH32+ is a primary species in the H, YR, SJ-2; CuCl+ is a primary species in the CC.
8) FeSO4(aq) is a secondary species in the H, CC, YR.
9) MgSO4(aq) is a secondary species in the H, CC, YR, GWP.
10) MnSO4(aq) is a secondary species in the H, M, CC, YR, GWP.
11) NiSO4(aq) is a secondary species in the H, CC, YR, GWP.
12) PbCl2, PbOH- is a secondary species in the CC, PbCl6 is a primary species in the CC.
13) ZnOHCl(aq) is a secondary species in the M, CC; ZnCl(aq) is a primary species in the CC; ZnCO3(aq) is a primary species in the H.

대한환경공학회 30권 7호, 2008년 7월
Table 6. Predominant metal species in the interstitial water of lagoon sediments classified as Group II by Horne and Goldman

<table>
<thead>
<tr>
<th>Element</th>
<th>Primary Species 1</th>
<th>Secondary Species 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$^{+3}$</td>
<td>Al(OH)$_3$</td>
<td>Al(OH)$_2$, Al(OH)$_3$(aq), AlOH$^{+}$</td>
</tr>
<tr>
<td>As</td>
<td>HASO$_4^{2-}$, H$_2$AsO$_4$</td>
<td>AsO$_4^{3-}$</td>
</tr>
<tr>
<td>Ca</td>
<td>Ca$^{2+}$, CaSO$_4$(aq)</td>
<td>CaCl$^-$, CaCO$_3$(aq), CaHCO$_3^-$, CaNO$_3^-$</td>
</tr>
<tr>
<td>Cd</td>
<td>Cd$^{2+}$, CdCl$^+_2$, CdSO$_4$(aq)</td>
<td>CdCO$_3$(aq), CdHCO$_3^-$, CdNO$_3^-$, CdOH$^-$, CdOHCl(aq), CdCl$_2$(aq), CdSO$_4^{2-}$</td>
</tr>
<tr>
<td>Co</td>
<td>Co$^{2+}$, CoSO$_4$(aq)</td>
<td>Co(NH$_3$)$_2^+$, Co(OH)$_3$(aq), CoCl$^-$, CoCO$_3$(aq), CdHCO$_3^-$, CoNO$_3^-$, CoOH$^-$</td>
</tr>
<tr>
<td>Cr</td>
<td>CrO$_3^{2-}$, HCrO$_4^-$</td>
<td>NaCrO$_4$, KCrO$_4$</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu$^{2+}$, CuCO$_3$(aq), CuSO$_4$(aq), CuOH$^-$</td>
<td>Cu(CO$_3$)$_2^-$, Cu(OH)$_2$(aq), Cu(OH)$_3^-$, CuCl$^-$, CuHCO$_3^-$, CuNH$_3^+$, CuNO$_3^-$</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe(OH)$_2^+$, Fe(OH)$_3$(aq)</td>
<td>Fe(OH)$_3$</td>
</tr>
<tr>
<td>Hg</td>
<td>HgCl$_2$(aq), HgClOH(aq)</td>
<td>Hg(NH$_3$)$_2^+$, Hg(OH)$_2$, HgCl$_2^-$, HgCl$_3$</td>
</tr>
<tr>
<td>K$^+$</td>
<td>K$^+$</td>
<td>KSO$_4^-$</td>
</tr>
<tr>
<td>Mg</td>
<td>Mg$^{2+}$, MgSO$_4$(aq)</td>
<td>MgCO$_3$(aq), MgHCO$_3^-$</td>
</tr>
<tr>
<td>Mn</td>
<td>Mn$^{2+}$, MnSO$_4$(aq), MnCl$^-$, MnHCO$_3^-$, MnNO$_3^-$, MnOH$^-$</td>
<td></td>
</tr>
<tr>
<td>Na$^+$</td>
<td>Na$^+$</td>
<td>NaHCO$_3$(aq), NaSO$_4^-$</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>Ni$^{2+}$, NiSO$_4$(aq)</td>
<td>NiCl$^-$, NiCO$_3$(aq), NiHCO$_3^-$, NiOH$^-$, NiNO$_3^-$, NiOH$^-$</td>
</tr>
<tr>
<td>Pb$^{2+}$</td>
<td>Pb$^{2+}$, PbCl$^-$, PbCO$_3$(aq), PbOH$^-$, PbSO$_4$(aq)</td>
<td>Pb(CO$_3$)$_2^-$, Pb(OH)$_2$(aq), PbSO$_4^{2-}$, PbCl$_2$(aq), PbHCO$_3^-$, PbNO$_3^-$</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>Zn$^{2+}$, ZnSO$_4$(aq)</td>
<td>Zn(OH)$_2$(aq), ZnSO$_4^{2-}$, ZnCl$^-$, ZnCO$_3$(aq), ZnHCO$_3^-$, ZnOH$^-$, ZnHCO$_3^-$</td>
</tr>
</tbody>
</table>

1 Pore waters containing low concentrations of chloride(BP, CJ).
2 Each species accounts for \geq 5% of total molar concentration of metal. Together, the primary species account for \approx 90% of the total metal.
3 Each species accounts for \leq 0.01% but \approx 5% of the total molar concentration of the metal.
4 Al(OH)$_3$(aq) is a primary species in the CJ.
5 NiHCO$_3^-$ is a primary species in the CJ.
6 PbHCO$_3^-$ is a primary species in the CJ.

84.3% CoCl$^-$が8.1～33.4%, CoSO$_4^{2-}$が0.99～8.8%で生成された。CrはCrO$_2^+$が54.2～76.7%で生成され、主にCr(CI)に存在していると報告されている。Cuは金屬-硫化鉄鉱物(CuO$_4^{2-}$)が36.3～68.5%、金屬-硫化鉱物(CuOH$^-$)が10.4～20.6%、主にCu(OH)$_2$が7.0～31.0%で生成されている。

Feは主にFe$^{2+}$、Fe$^{3+}$、Fe$^{4+}$に存在し、84.7～97.7%で生成されている。各鉱物はFe$^{2+}$、Fe$^{3+}$、Fe$^{4+}$存在時の生成体を示すことが提案されている。MnはMn$^{2+}$が77.8～91.7%、MnCl$^-$が3.2～14.7%、MnSO$_4^{2-}$が1.9～9.3%で生成された。

NiはNi$^{2+}$が69.2～84.2%、NiCl$^-$が6.0～18.0%で生成された。Pbは主にPb$^{2+}$、Pb$^{4+}$、Pb$^{6+}$、PbOH$^-$で生成されている。主成分の酸化数を考慮して計算したZnはZn$_2^+(aq)$が56.3～79.1%で生成され、ZnCl$^-$、ZnHCO$_3^-$、ZnSO$_4^{2-}$などの生成体が生成され、FeはFe$^{2+}$、Fe$^{3+}$、Fe$^{4+}$が8.0～15.2%で生成された。

3.4.2. Group II水相の酸性度における金属変化傾向

NaとKはGroup Iと同様で、主成分がHCIの酸性度が98.1～99.7%、97.5～99.7%で生成された。CuはCu$^{2+}$が61.0～91.3%、CuSO$_4^{2-}$が8.1～38.9%で生成され、Mg$^{2+}$、Mg$^{4+}$が6.5～93.0%、MgSO$_4^{2-}$が6.5～33.6%で生成される。Alは主成分Al(OH)$_3$で生成され、AsはHASO$_4^{2-}$が52.4～70.2%、H$_2$AsO$_4$が26.8～47.6%で生成される。CdはCd$^{2+}$が45.0～68.1%、CdCl$^-$が22.9～24.8%、CdSO$_4^{2-}$が6.2～22.9%で生成される。CoはCo$^{2+}$が2.8～88.6%、CoSO$_4^{2-}$が6.8～34.8%で生成される。CrはCr$^{3+}$が75.4～86.6%で生成される。CuはCu$^{2+}$が33.4～42.7%で生成される。FeはFe$^{2+}$、Fe$^{3+}$、Fe$^{4+}$が8.0～15.2%で生成される。NiはNi$^{2+}$が66.4～93.0%、NiSO$_4^{2-}$が6.3～32.8%で生成される。PbはPb$^{2+}$、Pb$^{4+}$、Pb$^{6+}$、PbOH$^-$が8.0～15.2%で生成される。Znの生成体はZn$^{2+}$が7.98%、Zn$^{3+}$が95.7%、ZnSO$_4^{2-}$が9.57%で生成される。

4. 結論

等濃度では、相対応する金属の生成体が異なり、それぞれの生成体が生成される。各金属の生成体は、生成体の生成率が98.1～99.7%で生成される。CuはCu$^{2+}$が61.0～91.3%、CuSO$_4^{2-}$が8.1～38.9%で生成される。Mg$^{2+}$、Mg$^{4+}$が6.5～93.0%、MgSO$_4^{2-}$が6.5～33.6%で生成される。Alは主成分Al(OH)$_3$で生成される。
비해 석호는 상대적으로 퇴적물 및 간극수에 Cu, Cd, Cr, As, Pb 등 많은 유해 중금속들이 높은 농도로 축적되어 있었다. 이들 금속 외에 간극수에는 알칼리 및 알칼리토금속의 (Na, Mg, K, Ca) 등이 매우 높게 검출되었으며, 검출농도는 퇴적물의 영분도와 비례하였다 (R² > 0.96). 또한, As, Fe 및 Ni도 영분도의 비례적 높은 상관성을 보였다 (R² > 0.84). 이것은 퇴적물로 해수가 유입되며, 유입된 해수가 밀도 차에 따라 심층으로 가라앉아 간극수에서 높은 농도를 보이는 것으로 생각된다. 따라서 해수의 유입이 석호의 수질이나 퇴적물에 큰 영향을 주는 것을 알 수 있었다.

간극수의 수질별 존재형태를 모델링한 결과, K와 Na는 자유이온 형태로 존재되어 간극수와 Cr는 자유이온을 포함한 3~4개 종류의 액체를 형성하였으며, Ca, Co, Cd, Ni, Pb 및 Zn은 10개 이 이상의 다양한 액체를 형성하였다.

해수유입으로 인해 영분도가 높은 청호 등들은 Cd, Co, Ni, Pb 및 Zn은 음영화 액체를 형성하였으며, Hg도 HgCl₄(aq), HgCl₂, HgCl₄ 등으로 두 액체를 형성하였다. 또한, Fe, Mn 및 Mg은 활성화 액체로 형성하였다. 그러나 영분농도가 낮은 천호 등은 Hg와Cd이 음영화 액체를 형성하였으며, Cu, Mg, Mn, Ni, Pb 및 Zn은 음영화 액체로 형성하였다. Fe는 Fe(OH)₃, Fe(OH)₃(aq) 등으로 수산기 액체를 형성하였다. 특히 Al, As 및 Cr 등은 영분농도와 상관없이 전체 석호에서 수산기 및 산화형태의 액체로 형성하였다.

화학분포 모델링 결과, 석호 퇴적물에 존재하는 간극수의 금속류 존재형태는 해수유입을 많은 군 I은 M³⁺, M’’⁺ + xCl⁻와 M’’⁺ + SO₄²⁻형태의 액체로 형성하였다. 이에 반해 영분도가 낮은 군 II는 M²⁺와 M’’⁺ + SO₄²⁻ 형태의 액체로 형성하였습니다. 간극수의 존재하는 미량 금속류는 군 I 호소들이 미량 금속의 농도가 높았고, 존재형태가 주로 자유이온(free aqua ion)과 금속 액체로 형성하고 있어 군 II 호소보다 수산세계에 미치는 영향이 큰 것으로 생각된다.

대부분의 석호들은 퇴적물체 식물과 점토질로 인해 매우 적어 바람에 의한 교란이나 전도(turnover) 현상에 의해 쉽게 상층으로 환산된다. 이러한 환산은 퇴적물뿐만 아니라 간극수도 함께 일어나며, 간극수에 존재하는 저유이온 형태의 금속과 액체 형태의 금속을 쉽게 수산세계로 확산되어 생태계 독성 및 축적을 일으킬 것으로 생각된다.

동해안 석호의 수질오염 특성은 오염부하량 중 93% 이상이 호수 퇴적층에 의한 오염으로 보고되고 있다. 이로 인해 석호의 수질개선을 위해 호수 내부의 오염물질 제거는 필수적인 개선방안이 되고 있다. 또한 석호는 유역에서 많은 토사가 유입되어 호수 수면적(저수량 등)을 감소시키고 있어 호수의 오염물질 제거와 수면적 확보를 위해 호수 퇴적물의 증설사업이 자주 실시되고 있다. 그러나 과거 경포호 등 일부 석호에서 실시된 퇴적물 증설사업이 내부 오염물질 제거보다는 모래채취에 그쳐 수질개선 효과를 얻지 못하였을 뿐 아니라, 석호내부에 생태계 교란, 오염물질 확산 및 축적 등을 초래하였을 가능성이 매우 높다. 따라서 호수의 퇴적물 제거는 퇴적물(간극수 포함)에 존재하는 유해물질의 연구진행이 필요하다. 특히 퇴적물의 처리를 실시할 경우 이러한 오염물질을 완전히 호수 외부로 제거하여야 한다. 또한 퇴적물(고형분)과 같이 존재하는 총농축 및 간극수 등 상수질을 분리하여 처리함으로써 수환경에 미치는 영향을 최소화해야 할 것으로 판단된다.

사 사
본 연구는 강원대학교 동물과학연구소의 지원으로 일부 기부인식 등이 수행되었습니다.

참고 문헌
10. Cairns, J. Jr., Nebeker, A. V., Gakstatter, J. H., and

